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Sparse array motion can efficiently expand the numbers of achievable degrees of freedom (DOFs) and 
consecutive lags, improving direction-of-arrival (DOA) estimation. Sparse arrays on a moving platform 
benefit from motion translation that introduces new sensor positions, which collectively with the 
original positions can increase the number of spatial autocorrelation lags and lead to full array 
augmentability. This property has been recently used for the case of environment-independent sparse 
array configurations, such as those defined by nested and co-prime arrays. In this paper, we consider 
environment-dependent sparse arrays (EDSAs) design using Cramer-Rao bound (CRB) as the metric of 
optimality for DOA estimation. The CRB is derived for a sparse array on a moving platform, where the 
number of identifiable uncorrelated sources exceeds the number of sensors. The CRB expression is used 
to solve for the sparse array configuration by applying the Genetic algorithm. Simulation results are 
provided to validate the effectiveness of the proposed EDSA design.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Direction finding using multi-sensor platforms and utilizing 
sparse array configurations finds broad applications in many areas 
including communications, radar, sonar, satellite navigation, and 
radio telescope [1–14]. Compared with uniform arrays, sparse ar-
rays can assume higher degree of freedoms (DOFs) and larger array 
aperture with the same number of sensors. Sparse array design 
typically seeks to position the available sensors so as to increase 
the number of spatial correlation lags across the array. Such objec-
tive defines what is referred to as environment-independent sparse 
arrays (EISAs), in which array design is not a function of the de-
sired and interfering sources in the field of view (FOV). Examples 
are coprime arrays [1], minimum redundancy arrays (MRAs) [7], 
minimum hole arrays (MHAs) [15] and nested arrays [2]. Gener-
ally, coprime and nested arrays are designed to estimate O (N2)

uncorrelated far-field narrowband sources through O (N) sensors. 
The EISAs differ in structures and, therefore, offer different DOA 
estimation performance, none of which is optimum for a specific 
environment. Environment-dependent sparse arrays (EDSAs), on 
the other hand, are configured to provide optimum performance. 
Cramer-Rao bound (CRB) and beamforming output signal-to-noise 
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ratio (SNR) have been considered as criteria of optimality [16–20]. 
Wang et al. designed the sparse arrays based on CRB [20], signal-
to-interference-plus-noise ratio (SINR) [16] and SNR [17] to en-
hance beamforming performance.

Subspace methods for DOA estimation using EISAs utilize con-
secutive autocorrelation lags across the array. As such, arrays with 
fewer holes and longer filled coarrays are deemed to outperform 
those with missing and interrupted lags. Alternative DOA estima-
tion methods based on sparse reconstructions [21–24] benefit from 
increased number of lags with no strict condition on consecutive 
arrangements. In this paper, we pursue subspace methods for ED-
SAs under array motions.

Fully augmented arrays can be achieved using dual or multiple 
frequencies, as proposed in [25,26]. For narrowband sources, miss-
ing lags can be recovered by the virtue of array motion, and under 
the assumption of quasi-stationarity. In essence, motion introduces 
a different set of autocorrelation lags depending on the array trans-
lation values and the original sensor positions. This can signifi-
cantly increase the number of consecutive lags and the DOFs [27,
28]. In [29], a novel nested array is designed to obtain a hole-free 
coarray on a moving platform, in which case the motion amounted 
to a translation of half a wavelength.

In this paper, we consider sparse arrays on a moving platform 
similar to [29]. The CRB is used as the design objective for deter-
mining the optimum array configuration. It is directly related to 
the inverse of the Fisher information matrix (FIM), which contains 
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information about all unknown parameters [30,31]. It is typically 
derived for the case of uniform linear arrays where the number of 
sources is less than the number of sensors. It also assumes the ex-
istence of the inverse of the matrix AH A, where A is the so-called 
array manifold matrix. For the case of sparse arrays, Liu et al. [32]
provided the specific expressions of the CRB when the number of 
sources is greater than the number of sensors, and proved that 
the CRB exists under the condition of the existence of the aug-
mented coarray manifold matrix. In [20], the authors designed the 
sparse arrays for enhanced DOA estimation with the metric of CRB, 
whereas the number of sources is less than the number of sensors.

In this paper, we design optimum sparse array on a moving 
platform by setting the CRB to its lowest possible value under the 
condition that the number of sources is greater than the number 
of sensors. These CRB values are smaller than those rendered by 
employing sparse arrays which only seek to increase the number of 
autocorrelation lags without being cognizant of the environment. 
We provide numerical results that consider CRB for a high number 
of sources at different angles, number of snapshots, and different 
SNRs. It is shown that CRB values for the optimum design are not 
only smaller than those associated with nested and super nested 
arrays but also less sensitive to the source angles.

The contributions of this paper are summarized as follows. i) 
CRB for DOA estimation on moving platforms is derived. ii) The 
optimum sparse array is obtained by solving non-convex cost func-
tion based on CRB using the Genetic algorithm. iii) The optimum 
sparse array associated with sources in known spatial sectors is 
found through simulations. The results imply robustness to angle 
changes.

The proposed approach can be generally applied to a sensor 
array operating in a quasi-stationary environment, such as sonar 
area. Another potential application is cooperative network localiza-
tion where agents communicate ranging information to improve 
localization accuracy [33–35]. In this case, the method proposed in 
this paper can be applied to design or select a optimum network 
under the condition of minimization of CRB.

The remainder of the paper is organized as follows. In Section 2, 
we describe the data model of DOA estimation on a moving plat-
form. The nested and super nested array are reviewed in Section 3. 
The expressions of CRB for a sparse array on a moving platform 
are derived in Section 4, and the optimum array design is pro-
vided. Numerical results are presented in Section 5 to demonstrate 
the effectiveness of the proposed method. Section 6 concludes this 
paper.

Notations: We use lower-case (upper-case) bold characters to 
denote vectors (matrices). In particular, IN denotes the N×N iden-
tity matrix. (·)T and (·)H respectively denote the transpose and 
conjugate transpose of a matrix or a vector. (·)∗ implies complex 
conjugation. E(·) is the statistical expectation operator and 

⊗
de-

notes the Kronecker product. Tr is the trace of the matrix. S and 
D denote the sets of integers, and C denotes the sets of complex 
values. CN (m, R) is a complex normal distribution with mean m
and covariance matrix R. rank(A) is the rank of A, and round(x) is 
a function which rounds x to the nearest integer.

2. Data model based on moving sparse array

Consider a sparse array with L sensors moving at a constant 
velocity v . The schematic is illustrated in Fig. 1, where a nested 
array is used as an example. The black circle and red rhombus 
represent the sensor positions of the original and shifted array, re-
spectively. Denote d = [d1, · · · ,dL]T is the positions of the array 
sensors, where dl = nd, l = 1, 2, · · · , L, with n represents an integer, 
d = λ/2 is the minimum inter-element spacing. The first sensor 
is used as a reference, i.e., d1 = 0. The received signals from Q
Fig. 1. DOA Estimation exploiting a moving sparse array.

far-field uncorrelated sources are described as sq(t) = αqs(t), t =
Ts, 2Ts, · · · , Ls Ts , for q = 1, · · · , Q , where Ts and Ls , respectively, 
denote the sampling interval and the number of snapshots. αq is 
the complex amplitude of the qth source, and [α1, α2, · · · , αQ ]T is 
assumed to be a Gaussian random vector with zero mean and co-
variance diag{p1, p2, · · · , p Q }, where pq is the qth source power. 
The angle of arrival of the qth source is denoted as θq . With a 
relatively high speed of the array platform, the directions of the 
sources with respect to the sensor array can be considered fixed 
over a platform short translation motion. The output of the receive 
array, at time t , is expressed as

x(t) =
Q∑

q=1

sq(t)exp

(
− j2π

vt sin(θq)

λ

)
a(θq) + ε(t)

= As(t) + ε(t),

(1)

where

a(θq)=
[

1,exp(− j2π
d2 sin(θq)

λ
), · · · ,exp(− j2π

dL sin(θq)

λ
)

]T

is the steering vector. In addition,

s(t) =
[

s1(t)exp

(
− j2π

vt sin(θ1)

λ

)
,

s2(t)exp

(
− j2π

vt sin(θ2)

λ

)
, · · · ,

sQ (t)exp

(
− j2π

vt sin(θQ )

λ

)]T

(2)

is the signal vector. A = [a(θ1), a(θ2), · · · , a(θQ )] ∈ CL×Q is the 
array manifold matrix, and ε(t) ∈CL×1 is zero-mean complex ad-
ditive white Gaussian noise vector with covariance matrix σ 2

ε IL . At 
time t + τ , the output of the receive array becomes

x(t+τ ) =
Q∑

q=1

sq(t+τ )exp

(
− j2π

vt sin(θq)

λ

)

× exp

(
− j2π

vτ sin(θq)

λ

)
a(θq)+ε(t + τ )

= Bs(t + τ ) + ε(t + τ ) (3)

where

B = [b(θ1),b(θ1), · · · ,b(θQ )] ∈CL×Q (4)

with

b(θq) = exp

(
− j2π

vτ sin(θq)

λ

)
a(θq)

=
[

exp

(
− j2π

vτ sin(θq)

λ

)
,

exp

(
− j2π

(vτ + d2) sin(θq)
)

, · · · ,

λ
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exp

(
− j2π

(vτ + dL) sin(θq)

λ

)]T
, (5)

and

s(t + τ ) =
[

s1(t + τ )exp

(
− j2π

vt sin(θ1)

λ

)
,

s2(t + τ )exp

(
− j2π

vt sin(θ2)

λ

)
, · · · ,

sQ (t + τ )exp

(
− j2π

vt sin(θQ )

λ

)]T

. (6)

For narrowband signals with carrier frequency f , sq(t + τ ) =
sq(t) exp( j2π f τ ). Accordingly, (3) can be rewritten as

x(t+τ ) = exp( j2π f τ )Bs(t) + ε(t + τ ). (7)

By choosing vτ = d = λ/2, the steering vector at time t + τ

becomes

b(θq) =
[

exp

(
− j2π

d sin(θq)

λ

)
,

exp

(
− j2π

(d + d2) sin(θq)

λ

)
, · · · ,

exp

(
− j2π

(d + dL) sin(θq)

λ

)]T

. (8)

By compensating for the phase correction factor exp( j2π f τ )

using the technique described in [36], we attain a phase synchro-
nized received signal vector as

x̃(t+τ ) = x(t+τ )exp(− j2π f τ ) = Bs(t) + ε̃(t + τ ), (9)

where ε̃(t + τ ) = exp(− j2π f τ )ε(t + τ ).
We obtain a synthetic array through combining equations (1)

and (9). The output of the array is expressed as

y(t) =
[

x(t)
x̃(t+τ )

]
= Acs(t) +

[
ε(t)

ε̃(t+τ )

]
∈ C L̃×1, (10)

where

Ac = [ac(θ1),ac(θ2), · · · ,ac(θQ )] ∈ C L̃×Q . (11)

with

ac(θq) = [aT (θq),bT (θq)]T

=
[

1, u2(θq), · · · , uL(θq), ud(θq), u2(θq)ud(θq), · · · ,

uL(θq)ud(θq)
]T

, (12)

where ul(θq) = exp
(− j2πdl sin(θq)/λ

)
and ud(θq) =

exp
(− j2πd sin(θq)/λ

)
. L̃ is the number of sensors in the synthetic 

array. Note that L̃ ≤ 2L since some sensor positions before and af-
ter motion may overlap. The combined array positions before and 
after motion constitute the synthesized array which clearly pro-
vides higher DOF than those offered by the original array position. 
Let S and Sc denote the integer sets of the original array and 
synthetic array, respectively. According to (12), we have

Sc = {n} ∪ {n + 1}, n ∈ S. (13)

If D and Dc represent the integer sets corresponding to the differ-
ence coarray of the original array and synthetic array, respectively. 
Then
D = n1 − n2, n1,n2 ∈ S,

Dc = n3 − n4, n3,n4 ∈ Sc . (14)

For example, if S = {0, 1, 5}, then D = {−5, −4, −1, 0, 1, 4, 5}. 
After array motion, Sc = {0, 1, 5, 6}. Dc = {−6, −5, −4, −1, 0, 1, 4,

5, 6}.
It is shown in [27] that the difference co-array of the combined 

two array positions consists of the difference co-array of the orig-
inal array and its unit lag shifted versions along (right), Dr , and 
opposite (left), Dl , to direction of motion, i.e.,

Dc = D ∪Dl ∪Dr . (15)

3. Review of the nested array and super nested array

There are two categories for the coarray configurations; one is 
full and the other is with holes. Most coprime arrays and MHAs 
belong to the former. Nested arrays, super nested arrays and MRAs 
are representatives of the later. Here, we review the configurations 
of the nested array and super nested array for better understand-
ing of the follow on sections.

A two-level nested array consists L = N1 +N2 sensors which are 
arranged into two uniform linear subarrays of N1 and N2 sensors. 
The sensor positions are given by [2]

Pn2,0 ={nd,0 ≤ n ≤ N1 − 1}
∪ {(n(N1 + 1) − 1)d,1 ≤ n ≤ N2} . (16)

For example, L = 6, N1 = N2 = 3. Then S = {0, 1, 2, 3, 7, 11}, 
Sc = {0, 1, 2, 3, 4, 7, 8, 11, 12}. D = {0, ±1, ±2, · · · , ±11}, Dc =
{0, ±1, ±2, · · · , ±11, ±12}. Obviously, the difference coarray is 
hole-free whether it is considered before or after moving half a 
wavelength.

For a second-order super nested array with L = N1 + N2 sen-
sors, the sensor positions are given by [3]

Ps2,0 =X1 ∪Y1 ∪X2 ∪Y2 ∪Z1 ∪Z2, (17)

where

X1 = {1 + 2l | 0 ≤ l ≤ A1}
Y1 = {(N1 + 1) − (1 + 2l) | 0 ≤ l ≤ B1}
X2 = {(N1 + 1) + (2 + 2l) | 0 ≤ l ≤ A2}
Y2 = {2(N1 + 1) − (2 + 2l) | 0 ≤ l ≤ B2}
Z1 = {l(N1 + 1) | 2 ≤ l ≤ N2}
Z2 = {N2(N1 + 1) − 1}.
The parameter A1, B1, A2 and B2 are defined as

(A1, B1, A2, B2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(r, r − 1, r − 1, r − 2) if N1 = 4 r,

(r, r − 1, r − 1, r − 2) if N1 = 4 r +1,

(r + 1, r − 1, r, r − 2) if N1 = 4 r +2,

(r, r, r, r − 1) if N1 = 4 r +3,

(18)

where r is an integer.
For example, L = 7, N1 = 3, N2 = 4. Then S = {0, 2, 5, 7, 11, 14,

15}, Sc = {0, 1, 2, 3, 5, 6, 7, 8, 11, 12, 14, 15, 16}. D = {0, ±1, ±2,

· · · , ±15}, Dc = {0, ±1, ±2, · · · , ±15, ±16}.
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4. Optimum sparse array based on Cramer-Rao low bound

Consider a real-valued random vector y with probability den-
sity function (pdf) p(y; β), where β is a real-valued parameter 
vector. Assume that the p(y;α) satisfies the regularity condi-
tion Ey[(∂/∂β) log p(y;β)] = 0. The Fisher information matrix (FIM) 
F(β) is defined as [32]

F(β)i j = −Ey

[
∂2

∂βi∂β j
log p(y;β)

]
. (19)

The CRB is given by the inverse of the FIM, if it exists, i.e.,

CRB(β) = F−1(β). (20)

The probability model with uncorrelated sources and Ls snapshots 
of the data observations in (10) is expressed as [32]⎡
⎢⎢⎢⎣

y(Ts)

y(2Ts)
...

y(Ls Ts)

⎤
⎥⎥⎥⎦∼ CN

⎛
⎜⎜⎜⎝0,

⎡
⎢⎢⎢⎣

Ry 0 · · · 0
0 Ry · · · 0
...

...
. . .

...

0 0 · · · Ry

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ , (21)

where Ry = E[yyH] = diag{p1, p2, · · · p Q }AcAH
c + σ 2

ε IL̃ . The param-
eter vector in (19) is defined as β = [θq, pq, σ 2

ε ].
Then, the FIM F(β) is rewritten as [32]

F(β)i j = LsTr
(

R−1
y

∂Ry

∂βi
R−1

y
∂Ry

∂β j

)
. (22)

In [32], CRB is proved to exist when the rank of the augmented 
coarray manifold matrix (ACM) equals to 2Q + 1 for a fixed sparse 
array. The ACM matrix AM for the motion case is defined as

AM = [
diag(Dc)VDc WDc

]
, (23)

where

VDc = [vDc (θ1) vDc (θ2) ... vDc (θQ )],
vDc (θq) = exp( jπDc sin θq), (24)

WDc = [VDc e0]. (25)

Here, e0 is a column vector which is defined in Lemma 2 in [32]. 
Let η and ηc denote the numbers of unique lags of D and Dc , 
respectively. The ACM matrix AM is a ηc × (2Q + 1) matrix for the 
motion case. It is a η × (2Q + 1) matrix for the non-motion case. 
It was shown in [27,29] that Sc remains a sparse (or hole-free) 
array which has a higher degree of freedom than S. Therefore, 
the definite condition of ACM in [32]is still suitable for the motion 
case, i.e., the CRB exists if and only if rank(AM) = 2Q + 1.

Based on these results, we can deduce the CRB for a moving 
sparse array, i.e.,

CRB(θ) = 1

4π2Ls

(
GH

0 �⊥
MWDc

G0

)−1
, (26)

where

G0 = M(diag(Dc)) × VDc × (diag(p1, p2, ..., p Q )), (27)

M =
(

JH(RT
Sc

⊗ RSc )
−1J

) 1
2
, (28)

Sc = {n} ∪ {n + 1}, n ∈ S, (29)

RSc = Ry = diag{p1, p2, · · · p Q }AcAH
c + σ 2

ε IL̃, (30)

�⊥
MWDc

= IL̃ − MWDc ({MWDc }H MWDc )
−1{MWDc }H . (31)

The proof can be found in Appendix A.
It can be observed from (26) that the CRB for a moving sparse 
array is related to the original array S, the synthetic array Sc , the 
difference coarray of the synthetic array Dc , the DOAs θ , the num-
ber of sources Q , the number of snapshots and SNR. In order to 
obtain a optimum sparse array on a moving platform, we minimize 
the above CRB. Let A denote the array aperture, then

min
S

Tr(CRB)

s.t. S(1) = 0, S(L) = A, A > L. (32)

The objective function corresponding to the minimization of (26) is 
a non-convex function. We use genetic algorithms detailed in [37,
38] to solve (32). The process is described in Algorithm 1. For sake 
of description, we let Np , ps , Nc and pm denote the size of pop-
ulation, the selection probability, the number of crossover and the 
mutation probability, respectively. Ni and μ represent the number 
of iteration and the initial value of CRB, respectively.

For a given aperture and number of sensors, the optimum array 
is obtained by computing CL−2

A−1 CRBs in (26) using enumeration. 
For the GA method, Ni iterations are executed to obtain the opti-
mum array. There are Ni[Np +round(Np × ps) +4Nc +2round(Np ×
pm)] CRB computations from Algorithm 1.

Algorithm 1 Genetic algorithm for array optimization.
Input: L, A, SNR,Ls , Q , θq , N p , ps ,Nc , pm , Ni , μ
Output: S
1: Initialize the early generation of population P0: produce randomly the Np

unduplicated sparse array whose CRB is less than μ
2: for all every iteration ∈ Ni do
3: Find the minimum of the CRB in the population, and record it and the corre-

sponding sparse array
4: Produce the next generation of population Pk based on the binary tourna-

ment selection:
for every selection ∈ Np do

Choosing Nt = round(Np × ps) individuals from Pk

Update Pk with the individual which has the minimum CRB in Nt

end
5: Execute crossover operation for updated Pk:

for every operation ∈ Nc do
Choosing 2 individuals from Pk

Exchanging randomly the sensor positions for these 2 individuals
Update Pk with the exchanged 2 individuals

end
6: Execute mutation operation for updated Pk:

for every individual ∈ Pk do
Produce a random number γ between zero and one

If γ ≤ pm

Choosing randomly a sensor position � (integer) from
2th to (L − 1)th sensor
Choosing randomly one bit from �, we obtain �m

after the inverted bit is replaced the chosen bit
Update Pk with �m

end
end

7: end for
8: Find the minimum CRB for every generation, and the corresponding individual 

is the optimum solution S
9: return S

5. Numerical results

In this section, we examine the proposed optimum sparse 
array through numerical examples. We assume A = 15, L = 7. 
We consider the nested array and super nested array with the 
same number of the sensors and array aperture for a fair com-
parison. For the nested array, the sensor locations of the orig-
inal array S = {0, 1, 2, 3, 7, 11, 15} and the respective difference 
coarray D = {0, ±1, ±2, · · · , ±15}. After moving half wavelength, 
the sensor locations and the difference coarray of the synthetic 
array are respectively Sc = {0, 1, 2, 3, 7, 11, 15, 16} and Dc =
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Fig. 2. The performance of GA method. (a) CRB versus the number of iteration; (b) The computational complexity.
{0, ±1, ±2, · · · , ±15, ±16}. For the super nested array, the sen-
sor locations of the original array S = {0, 2, 5, 7, 11, 14, 15} and 
the difference coarray D = {0, ±1, ±2, · · · , ±15}. After array mo-
tion of half a wavelength, it has the same sensor locations and the 
difference coarray as those of the nested array. We consider Q = 9
equal-power sources located at 0.5 sin θq = −0.49 + 0.9(q − 1)/Q .

5.1. The performance of GA method

In the first example, we examine the performance of GA 
method. Let SNR = 0dB, the number of snapshots is set as 10000. 
Np = 50, ps = 0.2, Nc = 90, pm = 0.1, Ni = 20. The other pa-
rameters are the same as above. The computation complexity is 
presented in Fig. 2(a). It is obvious that the GA method converges 
when the number of iteration is 6. At this time, the CRB of the op-
timum array is the same as that of the optimum array obtained 
by enumeration. In Fig. 2 (b), we plot the number of CRB compu-
tations versus the array aperture. The array aperture varies from 
15 to 60. It can be seen from the figure that GA method has a 
higher computation complexity than the enumeration when the 
array aperture is relatively small. Accordingly, the GA method has 
advantages under the condition of large aperture.

5.2. The CRB of the optimum array for different snapshots

In the second example, we let SNR = 0dB, the number of snap-
shots varies from 10 to 10000. The simulation results are shown 
in Fig. 3. From the figure, the CRB decreases with the number of 
snapshots. For the same number of sensors and array aperture, the 
optimum array has the lowest CRB which is superior to both the 
super nested array and the nested array. The sensor locations of 
the optimum array before and after motion, the difference coarray 
of the synthetic array are presented in Fig. 4 (a)-(g). It is noted that 
the optimum array is independent of the number of snapshots. 
This is because the CRB is inverse proportional to the number of 
the snapshots, which can be seen in (26). The nested array and the 
super nested array, as well as their difference co-arrays are shown 
in Fig. 4 (h). We observe that there are only 4 common sensor po-
sitions (marked with green color) between the nested array and 
the optimum array, underscoring the difference in configurations. 
The same overlapping occurs between the super nested array and 
the optimum array.

5.3. The CRB of the optimum array for different SNRs

In the third example, we let Ls = 1000, the SNR varies from 
-20 dB to 30 dB. The simulation results are shown in Fig. 5. Similar 
Fig. 3. CRB versus the number of snapshots.

to the second example, CRB decreases with the increments of SNR. 
For the same number of sensors and array aperture, the optimum 
array has the lowest CRB which is superior to the super nested 
array and the nested array. The sensor locations of the optimum 
array before and after motion as well as the difference coarray of 
the synthetic array are presented in Fig. 6 (a)-(k). The difference 
is that the optimum array configuration changes with SNR. From 
Fig. 6 (l), when considering the employed values of SNR, there are 
6 overlapping sensors between the nested array and the optimum 
array, which is same as that between the super nested array and 
the optimum array.

5.4. The CRB of the optimum array for angular increment

In practical scenarios, the source angular directions are not 
known a priori and cannot, therefore, be used to derive CRB. How-
ever, the sources DOAs may be known within defined spatial sec-
tors. We consider CRB-based optimum array design for different 
source angles. We use Q = 9 sources uniformly distributed from 
−60o to 60o and SNR=5 dB. Each source angle is allowed to change 
around its center value from −10o to 10o with an increment of 2 
degrees. The source center angles are −60o, −45o, −30o, −15o, 0o, 
15o, 30o, 45o and 60o. This arrangement generates 11 sets with 11 
CRB values corresponding to potentially 11 different sparse array 
configurations. The results of CRB versus angular increment are 
presented in Fig. 7 and 9. Each increment describes one set of 
sources or one environment, with zero increment corresponds to 
the center angles. CRB-based optimization over the 11 source sets 
only yields two optimum arrays, optimum array 1 and optimum ar-
ray 2, which are shown in Fig. 8. Only one sensor is different in the 
two arrays. Clearly, optimum array 1 and optimum array 2 have a 
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Fig. 4. The optimum array (the first line) and the non-negative parts of the difference coarray (the second line) for every snapshot in Fig. 3. (a) Ls = 10, (b) Ls = 100, (c) 
Ls = 250, (d) Ls = 500, (e) Ls = 1000, (f) Ls = 5000, (g) Ls = 10000, (h) �: the nested array; 	: the super nested array; •: the difference coarray. (•:sensors; ×:holes; 
green:overlapping sensors).

Fig. 5. CRB versus SNR.

Fig. 6. The optimum array (the first line) and the non-negative parts of the difference coarray (the second line) for every SNR in Fig. 5. (a) SNR = −20 dB, (b) SNR = −15 dB, 
(c) SNR = −10 dB, (d) SNR = −5 dB, (e) SNR = 0 dB, (f) SNR = 5 dB, (g) SNR = 10 dB, (h) SNR = 15 dB, (i) SNR = 20 dB, (j) SNR = 25 dB, (k) SNR = 30 dB.
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Fig. 7. CRB versus SNR.

lower bound than those of the nested and the super nested arrays, 
and the bound is also robust to changes in angle, as can be seen 
in Fig. 9. From the figure, optimum array 1 and optimum array 
2 have the same performance. The difference between the hight-
est and lowest values of the CRB for the optimum arrays is 0.068 
×10−8, whereas it is 0.097 ×10−8 for the super nested array. The 
nested array has the largest difference value, which implies that it 
is less robust than the other arrays.

6. Conclusion

In this paper, we considered sparse array design for moving 
platforms where the observations are collected at two instants of 
time separated by a motion of half a wavelength. The design objec-
tive is the minimization of CRB of the parameters underlying DOA 
Fig. 8. The optimum sparse arrays for mismatched DOA. (a) Optimum array1; (b) 
Optimum array2.

estimation problems. The paper focused on narrowband uncorre-
lated sources and dealt with the case where the number of sources 
exceeds the number of sensors. The CRB of the obtained sparse 
array configuration is less than that of environment-independent 
sparse array considered, namely, the nested array and super nested 
array, under the conditions of the same array aperture and the 
same number of sensors. Although the optimum array differs with 
SNR, it remains fully augmented.
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Appendix A. Proof of CRB

If (19) is nonsingular, the CRB can be expressed as [32,39]

CRB(θ) = 1

Ls

(
GH�⊥

�G
)−1

, (A.1)

where G = (RT
y ⊗ Ry)

− 1
2

[
∂ry
∂θ1

· · · ∂ry
∂θQ

]
,  = (RT

y ⊗ Ry)
− 1

2 ×[
∂ry
∂ p1

· · · ∂ry
∂ p Q

∂ry

∂σ 2
ε

]
. �⊥

 = I − (H)−1H is the orthogonal pro-

jection onto the null space of H . ry = vec(Ry), where vec(·) is the 
vectorization. Using the binary matrix J defined in the Appendix B 
in [32], we can obtain

a∗
c (θi) ⊗ ac(θi) = JVDc . (A.2)

The vector ry is rewritten as

ry = J(VDcp + σ 2
ε e0) = JWDc

[
p
σ 2

ε

]
(A.3)

where p = [p1, · · · , p Q ]T .
Combining (A.3) and G yields

G = j2π(RT
y ⊗ Ry)

− 1
2 J(diag(Dc))VDcP, (A.4)

where P = diag(p1, · · · , p Q ). Similarly, we can rewrite  as

� = (RT
y ⊗ Ry)

− 1
2 JWDc . (A.5)

Substituting (A.4) and (A.5) into (A.1) yields

CRB(θ)

= 1

4π2Ls

(
GH�⊥

�G
)−1

(A.6)

= 1

4π2Ls
PH VH

Dc
(diag(Dc))

H ·[
JH (RT

y ⊗ Ry)
− 1

2 �⊥
(RT

y ⊗Ry)
− 1

2 JWDc

(RT
y ⊗ Ry)

− 1
2 J
]

·

(diag(Dc))VDcP

= 1

4π2Ls
PH VH

Dc
(diag(Dc))

H ·[
MH M − MH (MWDc )[(MWDc )

H (MWDc )]−1[(MWDc )
H M

]
·

(diag(Dc))VDcP

= 1

4π2Ls

(
GH

0 �⊥
MWDc

G0

)−1
,

where G0 = M(diag(Dc))VDc P, M =
(

JH(RT
Sc

⊗ RSc )
−1J

) 1
2

.
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